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Abstract: In this paper, the asymptotic stability and numerical method of
shallow water wave equation with Benjamin-Bona-Mahony type is considered.
Under suitable assumption, we prove that the solution of the shallow water
wave equation is asymptotically convergent to the steady-state solution of the
equation, and some exponentially decay rate are obtained. In addition, we al-
so construct a numerical scheme of the equation, we prove that the scheme is
unconditionally stable, and we also get the estimate of the full discrete scheme.
Finally, some results of the theoretical analysis are verified by numerical exper-
iments
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§1 Introduction

Since Benjamin et al.[1] proposed the Benjamini-Bona-Mahony(BBM) mod-
el in 1972, the research of this kind of model has been a hot topic. The latest
research shows that this kind of model can be used to describe the wave propa-
gation process from deep water to shallow water. The theoretical and numerical
research of this kind of model has attracted the interest of researchers.

Medeiros et al.[2] studied the existence and uniqueness of solutions to BBM
equation. Amick et al. [3] investigated the long-term behavior of the solution of
BBM equation, they used energy estimation, maximum principle, and Cole-Hopf
transformation to get the decay rate result of the solution:

‖u(·, t)‖L2(R) = O(t−
1
4 ), ‖∂xu(·, t)‖L2(R) = O(t−

3
4 ), ‖u(·, t)‖L∞(R) = O(t−

1
2 ).

Biler [4] considered the generalized two-dimensional BBM equation and obtained
some estimates of the decay rate:

‖u‖L∞ = O(t−
1
3 ), ‖u‖L∞ = O(t−

2
3 ).

Mei[5] used Fourier transform method and point-by-point method of Green’s
function to obtain the decay rate estimates for the BBM equation. Chen et
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al.[6] studied the two-dimensional small amplitude water wave model and ob-
tained some estimation results of the attenuation rate of some solutions. Zhang
[7], Guo et al.[8] obtained the decay rate of BBM equation solution in high-
dimensional space by using low-frequency Fourier method and high-frequency
energy method. In the recent research, Kundu et al. [9] obtained the asymptotic
attenuation estimation results of BBM equation with homogeneous boundary
and the error estimation of some numerical solutions. Numerical aspects: Om-
rani et al. [10, 11] given a second-order numerical scheme for solving BBM
equation. The time direction was discretized by Crank-Nicol scheme, and the
space direction was discretized by standard finite element method, and the cor-
responding error estimate was obtained. Dogan [13] used finite element method
to solve a class of regular long wave equations, for very small amplitude waves,
the algorithm has good accuracy for small amplitude waves. Qin [14] given a
numerical scheme for solving BBM equations by using fully discrete mixed finite
element method.

In this paper, we will study the asymptotic convergence property and nu-
merical scheme of a class of shallow water wave models, First, we assume that
the steady-state equation has a minimum eigenvalue, and by using the energy
estimation method, we prove that the solution of BBM shallow-water wave e-
quation converges gradually to the solution of the steady-state equation, and
we also get the exponential decay rate estimates under different norms. We also
study the numerical format of the equation, i.e. time is discretized by Crank
- Nicol Son method, space is discretized by Fourier-Galerkin method, the con-
vergence order of the scheme isO(∆t2 + N1−m), here ∆t is the time discrete
step size, N is polynomial order, m is the smoothness of the solution. Finally,
we give some numerical examples to verify the correctness of the theoretical
analysis.

The structure of this paper is as follows: In the second section, the asymp-
totic stability analysis of the equation will be given. The third section will
discuss the time semi-discrete format. The fourth section will analyze the error
estimation of the fully discrete format. Finally, we will give some numerical
results.

§2 Asymptotic stability analysis

We consider the following dissipative BBM shallow water wave equation:

∂tu+ ∂xu− ∂2
x∂tu+ u∂xu− ν∂2

xu = f(x, t), t ∈ (0,∞), x ∈ R, (1)

satisfy the following initial conditions:

u(x, 0) = u0(x), x ∈ R, (2)

and boundary conditions:

u(x, t) = u(x+ L, t), t ∈ (0,∞), x ∈ R, (3)

Here ν is a non-negative constant, ∂2
x∂tuis the dispersion term, ∂2

xuis the dissi-
pative term. §f(x, t) A is a given function.

Here we study the asymptotic properties of the solution of the equation(1)-
(3) when t→∞. Suppose lim

t→∞
u(x, t) = u∞, here u∞is the steady state solution

of the equation, then

∂xu
∞ + u∞∂xu

∞ − ν∂2
xu
∞ = f∞, x ∈ R, (4)

u∞(x) = u∞(x+ L), x ∈ R, (5)

190



wheref∞(x) = lim
t→∞

f(x, t).

Consider the weak form of the steady state equation (4)-(5)

(∂xu
∞, v) + (u∞∂xu

∞, v) + ν(∂xu
∞, ∂xv) = (f∞, v), ∀v ∈ H1

∗ . (6)

Now we consider the following assumptions:
(A1) Eigenvalue problem

∂xφ+ ∂xu
∞φ− ν∂2

xφ = λφ, φ(x) = φ(x+ L), (7)

Has the smallest positive eigenvalueλ0 > 0. observe∀φ ∈ H2 ∩H1
∗ , then∫ L

0

∂xu
∞φ2dx+ ν‖∂xφ‖20 = λ‖φ‖20 ≥ λ0‖φ‖20.

As can be seen from the above equation

ν‖∂xφ‖20 + (u∞∂xφ+ ∂xu
∞φ, φ) = ν‖∂xφ‖20 +

1

2

∫ L

0

∂xu
∞φ2dx

≥ λ0

2
‖φ‖20 +

ν

2
‖∂xφ‖20 ≥

ν

2
‖∂xφ‖20. (8)

Using the above inequalities and assumptions A1, we can obtain the existence
and uniqueness of solutions to the equation (4)-(5).

Poincaréinequality: ∀ψ ∈ H1
∗ (Ω), then ‖ψ‖ ≤ 1√

λ1
‖∂xψ‖, hereλ1 = ( 2π

L )2

is the first minimum eigenvalue of homogeneous Dirichlet eigenvalue problem

− ∂2
xψ = λψ,

ψ(x) = ψ(x+ L).

Based on this, we have the following estimation results of steady-state
solutions.
Lemma 2.1 Let u∞be the solution of (4)-(5), The following estimate holds:

‖∂xu∞‖ ≤C‖f∞‖−1, (9)

‖u∞‖ ≤C‖f∞‖−1, (10)

‖u∞‖L∞ ≤C‖f∞‖−1. (11)

Proof: Taking the inner product with u∞, we have

ν‖∂xu∞‖20 = (f∞, u∞) ≤ C‖f∞‖−1‖∂xu∞‖0.

Then we obtain (9). Using Poincaréinequality, we have

‖u∞‖0 ≤
1√
λ1

‖∂xu∞‖0 ≤ C‖f∞‖−1.

That is

‖u∞‖2L∞ ≤ C‖u∞‖0‖∂xu∞‖0 ≤ C‖f∞‖2−1.

Here, we will give the asymptotic stability results, that is, we will prove
that the difference between the solution of equation (1)-(3) and the solution of
steady state equation (4)-(5) is asymptotically convergent with respect to time
t.
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First, let z = u− u∞, then combine with (1)-(3)and (4)-(5), we have

∂tz − ∂t∂2
xz + ∂xz − ν∂2

xz + u∞∂xz + z∂xu
∞ = F, x ∈ R, t > 0, (12)

z(x, 0) = u0(x)− u∞(x) = z0, (13)

z(x, t) = z(x+ L, t), (14)

hereF = f − f∞.
The weak form of equation (12)-(14) is: find z ∈ H1

∗ , t > 0 such that:

(∂tz, v) + (∂t∂xz, ∂xv) + ν(∂xz, ∂xv) + (u∞∂xz + z∂xu
∞, v) = (F, v), ∀v ∈ H1

∗ .
(15)

In order to obtain the estimation results, we need the following assumptions:
(A2): u0 ∈ H2 ∩H1

∗ , f∞ ∈ L2, f ∈ L∞((0,∞), L2), ‖ea1tF (t)‖20 ≤M,M >
0.

For the original equation (1)-(3), we have the following stability results.
Theorem 2.1: Under the assumption of A2, the solution of equation (1)-(3)
satisfies the following regularity estimation

‖u‖20 + ‖∂xu‖20 ≤ ‖u0‖20 + ‖∂xu0‖20 + C

∫ t

0

‖f(s)‖2−1ds. (16)

Proof: Taking the inner product with u, we have

1

2

d

dt
‖u‖20 +

1

2

d

dt
‖∂xu‖20 + ν‖∂xu‖20 = (f, u) ≤ C‖f‖2−1 + ν‖∂xu‖2.

Then

d

dt
(‖u‖20 + ‖∂xu‖20) ≤ C‖f‖2−1.

That is (16).
Theorem 2.2 Assuming A1 and A2 hold, for 0 < a ≤ νλ1

4(λ1+1) , δ ∈ (0, a), a1 =

a− δ, we have

‖ea1tz‖20 + ‖∂xea1tz‖20 ≤ C(‖z0‖21, ν, λ1, δ,M). (17)

Proof: Let v = e2atz in(12), we have

1

2

d

dt
(‖eatz‖20 + ‖eat∂xz‖20)− a(‖eatz‖20 + ‖eat∂xz‖20)

+ ν‖eat∂xz‖20 + (u∞∂xe
atz + eatz∂xu

∞, eatz) = (eatF, eatz).

From (8),Young’s and Poincaréinequality, we have

d

dt
(‖eatz‖20 + ‖eat∂xz‖20)−2a(‖eatz‖20 + ‖eat∂xz‖20) + ν‖eat∂xz‖20

≤ 2√
λ1

‖eatF‖0‖eatzx‖0 ≤
2

νλ1
‖eatF‖20 +

ν

2
‖eat∂xz‖20.

Using Poincaréinequality again

d

dt
(‖eatz‖20 + ‖eat∂xz‖20) +

(ν
2
− 2a(

1

λ1
+ 1)

)
‖eat∂xz‖20 ≤

2

νλ1
‖eatF‖20.
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Integrating t on both sides

e2at
(
‖z‖20 + ‖∂xz‖20

)
≤ ‖z0‖20 + ‖∂xz0‖20 +

2

νλ1

∫ t

0

‖easF (s)‖20ds. (18)

multiplying by e−2δt, noticing a = a1 + δ, then

e2a1t
(
‖z‖20 + ‖∂xz‖20

)
≤ e−2δt

(
‖z0‖20 + ‖∂xz0‖20

)
+

M

νλ1δ
(1− e−2δt).

Theorem 2.3 Under the assumption of A1 and A2, for 0 < a ≤ νλ1

4(λ1+1) , we

have

‖∂xea1tz‖20 + ‖∂2
xe
a1tz‖20 ≤ C(‖z0‖21, ‖f∞‖−1, ν, λ1, δ,M) (19)

Proof: Let v = −e2at∂2
xz in equation (12)

1

2

d

dt
(‖eat∂2

xz‖20 + ‖eat∂2
xz‖20)− a(‖eat∂2

xz‖20 + ‖eat∂2
xz‖20) + ν‖eat∂2

xz‖20
=(eatF,−∂2

xe
atz) + (zeat∂xz, e

at∂2
xz) + (u∞∂xe

atz + eatz∂xu
∞, ∂2

xe
atz).

For the first term at the right end, it can be obtained from Young’ s inequality:

(eatF,−∂2
xe
atz) ≤ 1

ν
‖eatF‖20 +

ν

4
‖eat∂2

xz‖20.

For the second term at the right end, it can be obtained from Young’ s inequality
and interpolation inequality

(zeat∂xz, e
at∂2

xz) ≤ ‖z‖0‖eat∂xz‖L∞‖eat∂2
xz‖0 ≤C‖z‖0‖eat∂xz‖

1
2
0 ‖eat∂2

xz‖
1
2
0 ‖eat∂2

xz‖0

≤C(ν)‖z‖40‖eat∂xz‖20 +
ν

4
‖eat∂2

xz‖20.

For the third term at the right end, it can be obtained from Young’ s inequality,
Poincaré inequality and interpolation inequality:

(u∞∂xe
atz + eatz∂xu

∞, ∂2
xe
atz)

≤ (C(ν)‖u∞‖2L∞ + C(ν)
1

λ1
‖∂xu∞‖2L∞)‖eat∂xz‖20 +

ν

4
‖eat∂2

xz‖20

≤ C(ν, λ1, ‖f∞‖−1)‖eat∂xz‖20 +
ν

4
‖eat∂2

xz‖20.

Then

d

dt
(‖eat∂xz‖20 + ‖eat∂2

xz‖20)− 2a(‖eat∂xz‖20 + ‖eat∂2
xz‖20) +

ν

2
‖eat∂2

xz‖20

≤2

ν
‖eatF‖20 + C(ν)‖z‖40‖eat∂xz‖20 + C(ν, λ1, ‖f∞‖−1)‖eat∂xz‖20.

From Poincaré inequality, we obtain

d

dt
(‖∂xeatz‖20 + ‖∂2

xe
atz‖20) +

(ν
2
− 2a(

1

λ1
+ 1)

)
‖eat∂2

xz‖20

≤2

ν
‖eatF‖20 + C(ν)‖z‖40‖eat∂xz‖20 + C(ν, λ1, ‖f∞‖−1)‖eat∂xz‖20. (20)
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Integrating t on the both sides and multiplying by e−2δt, that is

‖∂xea1tz‖20 + ‖∂2
xe
a1tz‖20 ≤e−2δt

(
‖z0‖20 + ‖∂xz0‖20

)
+

2

ν
e−2δt

∫ t

0

‖easF (s)‖20ds

+ C(ν)e−2δt

∫ t

0

‖z‖40‖eas∂xz‖20ds

+ C(ν, λ1, ‖f∞‖−1)e−2δt

∫ t

0

‖eas∂xz‖20ds

≤e−2δt
(
‖z0‖20 + ‖∂xz0‖20

)
+
M

νδ
(1− e−2δt)

+ e−4a1t(1− e−2δt)C(‖z0‖21, ν, λ1, δ,M)

+ (1− e−2δt)C(‖z0‖21, ν, ‖f∞‖−1, λ1, δ,M)

We consider the following assumptions (A3): u0 ∈ H2 ∩ H1
∗ , f∞ ∈

L2, f ∈ L∞((0,∞), L2), sup
t>0
‖f(t)‖20 ≤M1, lim

t→∞
‖F (t)‖0 = 0.

Theorem 2.4
Under the assumption that A1 and A3, for a given ε > 0, there is a T >

0§such that for all t ≥ T , ‖F (t)‖0 < ε and the following estimates holds

‖z‖20 + ‖∂xz‖20 + ‖∂2
xz‖20 ≤ Ce−2a(t−T ) + Cε2, (21)

whereC = C(‖z0‖21, a, ν, ‖f∞‖−1, λ1, δ,M1).
Proof: From (18), we have

(‖z‖20 + ‖∂xz‖20) ≤ e−2at
(
‖z0‖20 + ‖∂xz0‖20

)
+

2

νλ1
e−2at

∫ t

0

‖easF (s)‖20ds.

From lim
t→∞

‖F (t)‖0 = 0, for all ε > 0, there is a T > 0, such that t ≥ T , for

‖F (t)‖0 ≤ ε. So we split the right integral term into two parts, (0, T )Ú(T, t),
so we have

(‖z‖20 + ‖∂xz‖20) ≤ C(ν, a, λ1)e−2a(t−T )
(
‖z0‖20 + ‖∂xz0‖20 +M1

)
+ Cε2.

For the (20) equation, integrate on both sides and multiple by e−2at, there are

‖∂xz‖20 + ‖∂2
xz‖20 ≤e−2at

(
‖z0‖20 + ‖∂xz0‖20

)
+

2

ν
e−2at

∫ t

0

‖easF (s)‖20ds

+ C(ν)e−2at

∫ t

0

‖z‖40‖eas∂xz‖20ds+ C(ν, λ1, ‖f∞‖−1)e−2at

∫ t

0

‖eas∂xz‖20ds.

At the same time

‖∂xz‖20 + ‖∂2
xz‖20 ≤ Ce−2a(t−T )

(
‖∂xz0‖20 + ‖∂2

xz0‖20
)

+ Cε2.

Then we obtain (21).

§3 Stability analysis of numerical schemes

In this section, we will give a time semi-discrete scheme and analyze the
unconditional stability of this time discrete scheme. Given a positive integerM ,
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let tn = n∆t, n = 0, 1, . . . ,M , where ∆t = T/M is the time step size§T be the
time.
C-N scheme.
First step n = 0:

u1 − u0

∆t
+ ∂xu

1 − ∂2
xu

1 − ∂2
xu

0

∆t
+

1

3
(2u0∂xu

1 + u1∂xu
0)− ν∂2

xu
1 = 0. (22)

When n > 1, we have

un+1 − un

∆t
+ ∂xu

n+ 1
2 − ∂2

xu
n+1 − ∂2

xu
n

∆t
− ν∂2

xu
n+ 1

2

+
1

6
(2∂xu

n+ 1
2 (3un − un−1) + un+ 1

2 ∂x(3un − un−1)) = 0, (23)

where

un+ 1
2 =

un+1 + un

2
.

Theorem 3.1 The solution of equation (22)-(23) satisfies the following estima-
tion:

E(un+1) ≤ E(u0), n = 0, 1, · · · ,M − 1, (24)

here

E(un) = ‖un‖20 + ‖∂xun‖20.

Proof: Taking the inner product with 2∆tu1 in (22). Note that

(2∂xu
1u0 + u1∂xu

0, u1) = (∂xu
1u0 + ∂x(u1u0), u1) = (∂xu

1u0, u1)− (u0u1, ∂xu
1) = 0.

Then

‖u1‖20 − ‖u0‖20 + ‖u1 − u0‖20 + ‖∂xu1‖20 − ‖∂xu0‖20 + ‖∂xu1 − ∂xu0‖20 + 2∆tν‖∂xu1‖20 = 0.

Then we obtain the first step of proof. Taking the inner product with 2∆tun+ 1
2

in (23), we have

(2∂xu
n+ 1

2 (3un − un−1) + un+ 1
2 ∂x(3un − un−1), un+ 1

2 )

=(∂xu
n+ 1

2 (3un − un−1), un+ 1
2 ) + (∂x(un+ 1

2 (3un − un−1)), un+ 1
2 )

=(∂xu
n+ 1

2 (3un − un−1), un+ 1
2 )− ((3un − un−1)un+ 1

2 , ∂xu
n+ 1

2 )

=0.

Then we have

‖un+1‖20 − ‖un‖20 + ‖∂xun+1‖20 − ‖∂xun‖20 + 2∆tα‖∂xun+ 1
2 ‖20 = 0.

We get proof of the theorem.
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§4 Error estimation for full discrete scheme

Here we will study the spatial discretization method of the scheme (22)-
(23), let SN = span{exp (−ikx) : |k| ≤ N}, and denote projection πN : L2(Λ)→
SN , that is

(πNv − v, ψ) = 0, ∀ψ ∈ SN ,

and H1projection π1
N : H1(Λ)→ SN , that is

(∂x(π1
Nv − v), ∂xψ) = 0, (π1

Nv − v, ψ) = 0, ∀ψ ∈ SN .

From [15]we have

‖u− πNu‖0 ≤N−m‖u‖m, ∀u ∈ Hm(Λ), m > 0, (25)

‖u− π1
Nu‖k ≤Nk−m‖u‖m, ∀u ∈ Hm(Λ), m > 0, k = 0, 1. (26)

C-N/F-G. The fully discrete scheme of equation (1) is: find un+1
N ∈ SN , such

that:
when n = 0

1

∆t
(u1
N − u0

N , ψN ) + (∂xu
1
N , ψN ) +

1

∆t
(∂xu

1
N − ∂xu0

N , ∂xψN )

+
1

3
(2u0

N∂xu
1
N + u1∂xu

0
N , ψN ) + ν(∂xu

1, ∂xψN ) = 0, n ≥ 0,∀ψN ∈ SN . (27)

n ≥ 1

1

∆t
(un+1
N − unN , ψN ) + (∂xu

n+ 1
2

N , ψN ) +
1

∆t
(∂xu

n+1
N − ∂xunN , ∂xψN ) + ν(∂xu

n+ 1
2

N , ∂xψN )

+
1

6
(2∂xu

n+ 1
2

N (3unN − un−1
N ) + u

n+ 1
2

N ∂x(3unN − un−1
N ), ψN ) = 0, n ≥ 1, ∀ψN ∈ SN .

(28)

Denote

ẽnN = π1
Nu(·, tn)− unN , ênN = u(·, tn)− π1

Nu(·, tn), enN = u(·, tn)− unN = ẽnN + ênN , n ≥ 0,

and error function Rn(x) = rn1 (x) + rn2 (x), where

rn1 (x) :=
u(x, tn+1)− u(x, tn)

∆t
− ∂tu(x, tn+ 1

2
),

rn2 (x) :=
∂2
xu(x, tn+1)− ∂2

xu(x, tn)

∆t
− ∂2

x∂tu(x, tn+ 1
2
).

That is

‖rn+1
1 ‖20 ≤ c∆t4, ‖rn+1

2 ‖20 ≤ c∆t4, ‖Rn‖20 ≤ c∆t4. (29)

We have the following stability results.

Theorem 4.1 If {un+1
N }is a solution of the full discrete scheme (27)-(28), then

we have

E(un+1
N ) ≤E(u0

N ), n = 0, 1, . . . ,M − 1. (30)
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Theorem 4.2 The solution of the full discrete scheme (27)-(28) satisfies the
following error estimate:

‖u(·, tk)− ukN‖1 ≤ c(∆t2 +N1−m), k = 0, 1, 2, . . . ,M. (31)

Proof: When f = 0, from (1) and (28) we have

(
ẽn+1
N − ẽnN

∆t
, ψN ) + (∂xẽ

n+ 1
2

N , ψN ) +
1

∆t
(∂xẽ

n+1
N − ∂xẽnN ), ∂xψN ) + ν(∂xẽ

n+ 1
2

N , ∂xψN )

+ (u(·, tn+ 1
2
)∂xu(·, tn+ 1

2
)− 1

6
(2∂xu

n+ 1
2

N (3unN − un−1
N ) + u

n+ 1
2

N ∂x(3unN − un−1
N ), ψN )

=(Rn, ψN ) + ((π1
N − I)∂xu(·, tn+ 1

2
), ψN ) +

1

∆t
((π1

N − I)(u(·, tn+1)− u(·, tn)), ψN )

+
1

∆t
((π1

N − I)(∂2
xu(·, tn+1)− ∂2

xu(·, tn)), ψN ).

LetψN = 2∆tẽ
n+ 1

2

N , we obtain

E(ẽn+1)− E(ẽn) (32)

≤2∆t‖Rn+1‖0‖ẽ
n+ 1

2

N ‖0 + 2∆t‖(π1
N − I)∂xu(·, tn+ 1

2
)‖0‖ẽ

n+ 1
2

N ‖0

+ 2‖(π1
N − I)(u(·, tn+1)− u(·, tn))‖0‖ẽ

n+ 1
2

N ‖0

+ 2‖(π1
N − I)(∂xu(·, tn+1)− ∂xu(·, tn))‖0‖∂xẽ

n+ 1
2

N ‖0

+ 2∆t
∥∥∥u(·, tn+ 1

2
)∂xu(·, tn+ 1

2
)− 1

6
(2∂xu

n+1
N (3unN − un−1

N ) + un+1
N ∂x(3unN − un−1

N ))
∥∥∥

0
‖ẽn+1
N ‖0

Notice that

u(·, tn+ 1
2
)∂xu(·, tn+ 1

2
)− 1

6
(2∂xu

n+ 1
2

N (3unN − un−1
N ) + u

n+ 1
2

N ∂x(3unN − un−1
N ) = D1 +D2,

where

D1 =
2

3
u(·, tn+ 1

2
)∂xu(·, tn+ 1

2
)− 1

3
(3unN − un−1

N )∂xu
n+ 1

2

N

=
2

3
u(·, tn+ 1

2
)∂xu(·, tn+ 1

2
)− 1

3
(3u(·, tn)− u(·, tn−1))∂xu(·, tn+ 1

2
)

+
1

3
(3u(·, tn)− u(·, tn−1))∂xu(·, tn+ 1

2
)− 1

3
(3unN − un−1

N )∂xu(·, tn+ 1
2
)

+
1

3
(3unN − un−1

N )∂xu(·, tn+ 1
2
)− 1

3
(3unN − un−1

N )∂xu
n+ 1

2

N ,

D2 =
1

3
u(tn+ 1

2
)∂xu(tn+ 1

2
)− 1

6
u
n+ 1

2

N ∂x(3unN − un−1
N )

=
1

3
u(tn+ 1

2
)∂xu(·, tn+1)− 1

6
u(·, tn+ 1

2
)∂x(3u(·, tn)− u(·, tn−1))

+
1

6
u(·, tn+ 1

2
)∂x(3u(·, tn)− u(·, tn−1))− 1

6
u
n+ 1

2

N ∂x(3u(·, tn)− u(·, tn−1))

+
1

6
u
n+ 1

2

N ∂x(3u(·, tn)− u(·, tn−1))− 1

6
u
n+ 1

2

N ∂x(3unN − un−1
N ).
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From taylor expansion and Young’ s inequality, we derive

1

3
‖D1‖20 ≤∆t3‖∂xu(·, tn+ 1

2
)‖2∞

∫ tn+1

tn

‖∂2
t u(·, t)‖20dt

+ ‖∂xu(·, tn+ 1
2
)‖2∞‖3enN − en−1

N ‖20 + ‖3unN − un−1
N ‖2∞‖∂xe

n+ 1
2

N ‖20,

≤c(∆t4 + ‖3enN − en−1
N ‖20 + ‖∂xe

n+ 1
2

N ‖20).

1

3
‖D2‖20 ≤∆t3‖u(·, tn+ 1

2
)‖2∞

∫ tn+1

tn

‖∂x∂2
t u(·, t)‖20dt

+ ‖∂x(3u(·, tn)− u(·, tn−1))‖2∞‖e
n+ 1

2

N ‖20 + ‖un+ 1
2

N ‖2∞‖∂x(3enN − en−1
N )‖20

≤c(∆t4 + ‖∂x(3enN − en−1
N )‖20 + ‖en+ 1

2

N ‖20)

Using Cauchy-Schwarz inequality

E(ẽn+1)− E(ẽn) ≤∆t‖Rn‖20 + ∆t‖(π1
N − I)∂xu(·, tn+ 1

2
)‖20 + 2∆t‖ẽn+1

N ‖20

+

∫ tn+1

tn

‖(π1
N − I)∂tu(·, t)‖20dt+ ∆t‖ẽn+1

N ‖20,

+

∫ tn+1

tn

‖(π1
N − I)∂x∂tu(·, t)‖20dt+ ∆t‖∂xẽn+1

N ‖20,

+ c∆t(∆t4 + ‖3enN − en−1
N ‖21 + ‖en+ 1

2

N ‖21 + ‖ẽn+1
N ‖0).

Summing up for n = 1, . . . , k, and using (26)-(29), we have

E(ẽk+1)− E(ẽ1) ≤c(∆t2 +N1−m)

+ c∆t
k∑

n=1

(‖3ẽnN − ẽn−1
N ‖21 + ‖ẽn+1

N ‖21), n = 1, 2, . . . ,M − 1.

(33)

For the first step

E(ẽ1) ≤ c(∆t4 +N2−2m). (34)

Substituting (34)into (33), and using the discrete Gronwall lemma we obtain
(31).

§5 Numerical experiment

In this section, we will use numerical examples to verify the accuracy of

theoretical analysis. First we let unN (x) =
N/1−1∑
k=−N/2

ûnk exp(−i2πkx/L) in (27) we

have:
C-N/F-G schemeµ

1

∆t
(ûn+1
k − ûnk )(1 + (2πk/L)2) + (i2πk/L+ ν(2πk/L)2)û

n+ 1
2

k

+
1

6
{2(3unN − un−1

N )∂xu
n+ 1

2

N + ∂x(3unN − un−1
N )u

n+ 1
2

N }k = 0,

f̂k or {f}k represent the k Fourier coefficients of f .
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5.1 Validity of numerical solution
Define the time convergence order:

Rate := log2

( ‖un,2∆t
N − u2n,∆t

N ‖1
‖u2n,∆t

N − u4n,∆t/2
N ‖1

)
.

Let N = 60, L = 2π, T = 1, and u(x, 0) = sin(2πx).
It can be clearly seen from Table 5.1 that when ∆t→ 0, the error order of

the format in the time direction is close to 2 order, which is consistent with the
proof of the theorem.

Table 5.1 Time Convergence Order.
ν \∆t ∆t=0.1 ∆t=0.05 ∆t=0.01 ∆t=0.005 ∆t=0.001
ν = 0 2.0007 2.0004 2.0001 2.0000 2.0000
ν = 1 2.0540 2.0250 2.0047 2.0023 2.0005

5.2 Asymptotic Attenuation of Solution

Taking u(x, t) = (1+e−t) sin(x) in equation (1). Then f(x, t) = −2e−t sin(x)+
(1 + e−t)2 sin(x) cos(x) + (1 + e−t)(ν sin(x) + cos(x)), notice that u∞(x) =
sin(x), f∞(x) = sin(x) cos(x) + ν sin(x) + cos(x). Obviously f, f − f∞ satis-
fies the hypothesis of A2, A3, so the conclusion of Theorem 2.2 - 2.4 holds.

We take N = 60, L = 4π,∆t = 0.01, u0 = sin(x), ν = 1, as can be seen
from fig. 1, the numerical solution of z(x, t) gradually converges to 0 when t
gradually becomes larger.

Fig 1. The numerical solution of z(x, t) when t = 10.
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